Worksheet for 2021-11-15

Conceptual questions

Question 1. Show that the vector field $\left\langle y^{2}, x y\right\rangle$ is tangent to the hyperbola $y^{2}-x^{2}=1$ at all points along the hyperbola.
Question 2. Find a Cartesian equation for the parametric surface $x=u+v, y=-u, z=v$ and describe its shape.
Question 3. Find a Cartesian equation the the parametric surface $x=u^{2}, y=-u, z=v$ and describe its shape.

Computations

Although the problems ask you to compute, the more instructive part is setting up the appropriate integral in the parameter plane.
Problem 1 (Stewart $\$ 16.7 .11)$. Compute $\iint_{S} x \mathrm{~d} S$ if S is the triangular region with vertices $(1,0,0),(0,-2,0),(0,0,4)$.
Problem 2 (Stewart $\S 16.7 .23$). Compute $\iint_{S}\langle x y, y z, x z\rangle \cdot \mathrm{d} \mathbf{S}$ if S is the part of the paraboloid $z=4-x^{2}-y^{2}$ lying over the square $0 \leq x \leq 1,0 \leq y \leq 1$, and oriented upwards.

